Using Associative Classifiers for Predictive Analysis in Health Care Data Mining

نویسندگان

  • Sunita Soni
  • Zuoliang Chen
  • Guoqing Chen
  • Ranjana Vyas
  • Lokesh Kumar Sharma
  • Om Prakash vyas
  • Simon Scheider
چکیده

Association rule mining is one of the most important and well researched techniques of data mining for descriptive task, initially used for market basket analysis. It finds all the rules existing in the transactional database that satisfy some minimum support and minimum confidence constraints. Classification using Association rule mining is another major Predictive analysis technique that aims to discover a small set of rule in the database that forms an accurate classifier. In this paper, we introduce the combined approach that integrates association rule mining and classification rule mining called Associative Classification (AC). This is new classification approach. The integration is done by focusing on mining a special subset of association rules called classification association rule (CAR). And then classification is being performed using these CAR. Using association rule mining for constructing classification systems is a promising approach. Given the readability of the associative classifiers, they are especially fit to applications were the model may assist domain experts in their decisions. Medical field is a good example was such applications may appear. Consider an example were

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Weighted Associative Classifier: a Predictive Technique for Health Care Data Mining

In this paper we extend the problem of classification using Fuzzy Association Rule Mining and propose the concept of Fuzzy Weighted Associative Classifier (FWAC). Classification based on Association rules is considered to be effective and advantageous in many cases. Associative classifiers are especially fit to applications where the model may assist the domain experts in their decisions. Weigh...

متن کامل

Predicting Implantation Outcome of In Vitro Fertilization and Intracytoplasmic Sperm Injection Using Data Mining Techniques

Objective The main purpose of this article is to choose the best predictive model for IVF/ICSI classification and to calculate the probability of IVF/ICSI success for each couple using Artificial intelligence. Also, we aimed to find the most effective factors for prediction of ART success in infertile couples. MaterialsAndMethods In this cross-sectional study, the data of 486 patients are colle...

متن کامل

An Overview of Associative Classifiers

Associative classification is a new classification approach integrating association mining and classification. It becomes a significant tool for knowledge discovery and data mining. This paper presents a critical overview of certain aspects on modelling associative classifiers including event association mining, computational complexity in mining associations, methods of constructing associativ...

متن کامل

A Study of Predictive Accuracy for Four Associative Classifiers

Association rule discovery is one of the primary tasks in data mining that extracts patterns to describe correlations between items in a transactional database. Using association rule mining for constructing classification systems is a promising approach. There are many associative classification approaches that have been proposed recently such as CBA, CMAR and MCAR. In this research paper, fou...

متن کامل

Pruning Techniques in Associative Classification: Survey and Comparison

Association rule discovery and classification are common data mining tasks. Integrating association rule and classification also known as associative classification is a promising approach that derives classifiers highly competitive with regards to accuracy to that of traditional classification approaches such as rule induction and decision trees. However, the size of the classifiers generated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010